Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
preprints.org; 2024.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202404.0312.v1

RESUMEN

Background: Post-acute sequelae of SARS-CoV-2 infection (PASC) is a complicated disease that affects millions of people all over the world. Previous studies have shown that PASC impacts 10% of SARS-CoV-2 infected patients of which 50-70% are hospitalized. It has also been shown that 10-12% of those vaccinated against COVID-19 were affected with PASC and its complications. The severity and the later development of PASC symptoms is positively associated with the early intensity of the infection. Results: The generated health complications caused by PASC involve a vast variety of organ systems. Patients affected by PASC have been diagnosed with neuropsychiatric and neurological symptoms. Cardiovascular system also has been involved and several diseases such as myocarditis, pericarditis, and coronary artery diseases were reported. Chronic hematological problems such as thrombotic endothelialitis and hypercoagulability were described as a condition that could increase the risk of clotting disorders and coagulopathy in PASC patients. Chest pain, breathlessness, and cough in PASC patients were associated with respiratory system in long COVID-19 causing respiratory distress syndrome. The observed immune complications were notable, involving several diseases. Renal system also was impacted and result in raising the risk of diseases such as thrombotic issues, fibrosis, and sepsis. Endocrine gland malfunction can lead to diabetes, thyroiditis, and male infertility. Symptoms such as diarrhea, nausea, loss of appetite and taste were also among reported observations due to several gastrointestinal disorders. Skin abnormalities might be an indication of infection and long-term implications such as persistent cutaneous complaints were linked to PASC. Conclusions: Long COVID is a multidimensional syndrome with considerable public health implications, affecting several physiological systems and demanding thorough medical therapy as well as more study to address its underlying causes and long-term effects.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome de Dificultad Respiratoria , Síndromes Neoplásicos Hereditarios , COVID-19 , Trastornos de Alimentación y de la Ingestión de Alimentos , Tiroiditis , Dolor en el Pecho , Síndrome Respiratorio Agudo Grave , Diabetes Mellitus , Infertilidad Masculina , Miocarditis , Enfermedades Gastrointestinales , Fibrosis , Pericarditis , Trombofilia , Trastornos Mentales , Sepsis , Anomalías Cutáneas , Trastornos de la Coagulación Sanguínea , Náusea , Tos , Trombosis , Enfermedad de la Arteria Coronaria , Diarrea
2.
preprints.org; 2024.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202403.0917.v1

RESUMEN

The relationship between pangolin-CoV and SARS-CoV-2 has been a subject of debate. Further evidence of a special relationship between the two viruses can be found by the fact that all known COVID-19 viruses have abnormally hard outer shell (low M disorder; i.e., low content of intrinsically disordered residues in the membrane (M) protein) that so far was found in CoVs associated with burrowing animals, such as rabbits and pangolins, in which transmission involves virus remaining in buried feces for a long time. While a hard outer shell is necessary for viral survival, a harder inner shell could also help. For this reason, the N disorder range of pangolin-CoVs, not bat-CoVs, more closely matches that of SARS-CoV-2 especially when Omicron is included. The low N disorder (i.e., low content of intrinsically disordered residues in the nucleocapsid (N) protein), first observed in pangolin-CoV-2017 amd later in Omicron, is associated with attenuation according to the Shell-Disorder-Model. Our experimental study revealed that pangolin-CoV-2017 and SARS-CoV-2 Omicron (XBB.1.16 subvariant) show similar attenuations with respect to viral growth and plaque formation. Subtle differences have been observed that are consistent with disorder-centric computational analysis.


Asunto(s)
Síndrome Oculocerebrorrenal , Trastornos de Combate , COVID-19
3.
biorxiv; 2023.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2023.09.28.559966

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional NSP14 enzyme, possessing exonuclease and mRNA capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscores the dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.


Asunto(s)
Infecciones por Coronavirus , COVID-19
4.
preprints.org; 2023.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202303.0441.v1

RESUMEN

Due to the health crisis caused by SARS-CoV-2, the creation of a new vaccine platform based on mRNA was implemented. Globally, around 13.32 billion COVID-19 vaccine doses of diverse platforms have been given, and up to this date, 69.7% of the total population received at least one injection of a COVID-19 vaccine. Although these vaccines prevent hospitalization and severe forms of the disease, increasing evidence has shown they do not produce sterilizing immunity, allowing people to suffer frequent re-infections. Recent research has also raised concerns that mRNA vaccines could induce immune tolerance, which, added to that caused by the virus itself, could complicate the clinical course of a COVID-19 infection. Furthermore, recent investigations have found high IgG4 levels in people who were administered two or more injections of mRNA vaccines. It has been suggested that an increase in IgG4 levels could have a protecting role by preventing immune over-activation, similar to that occurring during successful allergen-specific immunotherapy by inhibiting IgE-induced effects. Altogether, evidence suggests that the reported increase in the IgG4 levels detected after repeated vaccination with the mRNA vaccines is not a protective mechanism; rather, it may be a part of the immune tolerance mechanism to the spike protein that could promote unopposed SARS-CoV2 infection and replication by suppressing natural antiviral responses. IgG4-induced suppression of the immune system due to repeated vaccination can also cause autoimmune diseases, promotes cancer growth, and autoimmune myocarditis in susceptible individuals.


Asunto(s)
Enfermedades Autoinmunes , Síndrome Respiratorio Agudo Grave , Neoplasias , Miocarditis , COVID-19
5.
preprints.org; 2022.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202210.0404.v1

RESUMEN

The ongoing evolution of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in the recent emergence of a highly divergent variant of concern (VOC) defined as Omicron or B.1.1.529. This VOC is of particular concern because it has the potential to evade most therapeutic antibodies and has undergone a sustained genetic evolution, resulting in the emergence of five distinct sub-lineages. However, the evolutionary dynamics of initially identified Omicron BA.1 and BA.2 sub-lineages remain poorly understood. Herein, we combined Bayesian phylogenetic analysis, mutational profiling, and selection pressure analysis to track virus genetic changes that drive the early evolutionary dynamics of the Omicron. Based on the Omicron dataset chosen for the improved temporal signals and sampled globally between November 2021 and January 2022, most recent common ancestor (tMRCA) and substitution rates for BA.1 were estimated to be 18 September 2021 (95% highest posterior density (HPD) 04 August – 22 October 2021) and 1.435×10-3 (95% HPD = 1.021×10-3 – 1.869×10-3) substitution/site/year, respectively, whereas 03 November 2021 (95% highest posterior density (HPD) 26 September – 28 November 2021) and 1.074×10-3 (95% HPD = 6.444×10-4 – 1.586×10-3) substitution/site/year for BA.2 sub-lineage. The findings of this study suggest that the Omicron BA.1 and BA.2 sub-lineages originated independently and evolved over time. Furthermore, we identified multiple sites in spike protein undergoing continued diversifying selection that may alter the neutralization profile of BA.1. This study shed light on the ongoing global genomic surveillance and Bayesian molecular dating analyses to better understand the evolutionary dynamics the virus and, as a result, mitigate the impact of emerging variants on public health.


Asunto(s)
Infecciones por Coronavirus , Enfermedades de la Hipófisis
6.
preprints.org; 2022.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202207.0051.v1

RESUMEN

For the first time in history, we have witnessed the origin and development of a pandemic. To handle the accelerated accumulation of viral mutations and to comprehend the virus' evolutionary adaptation in humans, an unparalleled program of genetic sequencing and monitoring of SARS-CoV-2 variants has been undertaken. Several scientists have theorized that, with the Omicron surge producing a more contagious but less severe disease, the end of COVID-19 is near. However, by analyzing the behavior shown by this virus for 2 years, we have noted that pandemic viruses do not always show a decreased virulence. Instead, it appears there is an evolutionary equilibrium between transmissibility and virulence. We have termed this concept “intermittent virulence”. The present work analyzes the temporal and epidemiological behavior of SARS-CoV-2 and suggests that there is a high possibility that new virulent variants will arise in the near future, although it is improbable that SARS-CoV-2´s virulence will be the same as was seen during the pandemic phase.


Asunto(s)
COVID-19
7.
preprints.org; 2022.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202203.0185.v1

RESUMEN

The scientific, private and industrial sectors use a wide variety of technological platforms available to achieve protection against SARS-CoV-2, including vaccines. However, the virus evolves continually into new highly virulent variants, which might overcome the protection provided by vaccines and may re-expose the population to infections. Mass vaccinations should be continued in combination with more or less obligation mandatory non-pharmaceutical interventions. Therefore, the key questions to be answered are: (i) How to identify the primary and secondary infections of SARS-CoV-2? (ii) Why are neutralizing antibodies not long-lasting in both the cases of natural infections and post-vaccinations? (iii) Which are the factors responsible for this decay in neutralizing antibodies? (iv) What strategy could be adapted to develop long-term herd immunity? (v) Is the Spike the only vaccine candidate or a vaccine cocktail is better?


Asunto(s)
COVID-19
8.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.02.15.480592

RESUMEN

Hyper-transmissibility with decreased disease severity are typical characteristics of Omicron variant. To understand this phenomenon, we used various bioinformatics approaches to analyze randomly selected genome sequences (one each) of the Gamma, Delta, and Omicron variants submitted to NCBI from 15 to 31 December 2021. We show that: (i) Pathogenicity of SARS-CoV-2 variants decreases in the order: Wuhan > Gamma > Delta > Omicron; however, the antigenic property follows the order: Omicron > Gamma > Wuhan > Delta. (ii) Omicron Spike RBD has lower pathogenicity but higher antigenicity than that of other variants. (iii) Decreased disease severity by Omicron variant may be due to its decreased pro-inflammatory and IL-6 stimulation and increased IFN-{gamma} and IL-4 induction efficacy. (iv) Mutations in N protein are associated with decreased IL-6 induction and human DDX21-mediated increased IL-4 production in Omicron. (v) Due to mutations, the stability of S, M, N, and E proteins decrease in the order: Omicron > Gamma > Delta > Wuhan. (vi) Stronger Spike-hACE2 binding in Omicron is associated with its increased transmissibility. However, the lowest stability of the Omicron Spike protein makes Spike-hACE2 interaction unstable for systemic infection and for causing severe disease. Finally (vii), the highest instability of Omicron E protein may also be associated with decreased viral maturation and low viral load leading to less severe disease and faster recovery. Our method may be used for other similar viruses, and these findings will contribute to the understanding of the dynamics of SARS-CoV-2 variants and the management of emerging variants.


Asunto(s)
Infecciones , Síndrome de Mortalidad de Pavipollos por Enteritis , Reflejo Anormal
9.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.02.11.480177

RESUMEN

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to evolve carrying flexible amino acid substitutions in the spike proteins receptor binding domain (RBD). These substitutions modify the binding of the SARS-CoV--2 to human angiotensin-converting enzyme 2 (hACE2) receptor and have been implicated in altered host fitness, transmissibility and efficacy against antibody therapeutics and vaccines. Reliably predicting the binding strength of SARS-CoV-2 variants RBD to hACE2 receptor and neutralizing antibodies (NAbs) can help assessing their fitness, and rapid deployment of effective antibody therapeutics, respectively. Here, we introduced a two-step computational framework with three-fold validation that first identified dissociation constant as a reliable predictor of binding affinity in heterodimeric and trimeric protein complexes. The second step implements dissociation constant as descriptor of the binding strengths of SARS-CoV-2 variants RBD to hACE2 and NAbs. Then, we examined several variants of concern (VOCs) such as Alpha, Beta, Gamma, Delta, and Omicron and demonstrated that these VOCs RBD bind to the hACE2 with enhanced affinity. Furthermore, the binding affinity of Omicron variants RBD was reduced with majority of the RBD-directed NAbs, which is highly consistent with the experimental neutralization data. By studying the atomic contacts between RBD and NAbs, we revealed the molecular footprints of four NAbs (GH-12, P2B-1A1, Asarnow-3D11, and C118) -- that may likely neutralize the recently emerged omicron variant -- facilitating enhanced binding affinity. Finally, our findings suggest a computational pathway that could aid researchers identify a range of current NAbs that may be effective against emerging SARS-CoV-2 variants.


Asunto(s)
Infecciones por Coronavirus , Enfermedad Injerto contra Huésped
10.
preprints.org; 2021.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202107.0554.v1

RESUMEN

The devastating impact of the ongoing coronavirus disease 2019 (COVID-19) on public health, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has made fighting of the COVID-19 pandemic is a top priority in medical research and pharmaceutical development. Surveillance of SARS-CoV-2 mutations is essential for the comprehension of SARS-CoV-2 variant diversity and their impact on virulence and pathogenicity. The SARS-CoV-2 open reading frame 10 (ORF10) protein interacts with multiple human proteins CUL2, ELOB, ELOC, MAP7D1, PPT1, RBX1, THTPA, TIMM8B, and ZYG11B expressed in the lung tissues. Mutations and co-mutations in the emerging SARS-CoV-2 ORF10 variants are expected to impact the severity of the virus and its associated consequences. In this article, We highlight 128 single mutations and 35 co-mutations in the unique SARS-CoV-2 ORF10 variants in this article. The possible predicted effects of these mutations and co-mutations on the secondary structure of ORF10 variants and host protein interactomes are presented. The findings highlight the possible effects of mutations and co-mutations on the emerging 140 ORF10 unique variants from secondary structure and intrinsic protein disorder perspectives.


Asunto(s)
Infecciones por Coronavirus , Trastornos Intrínsecos del Sueño , COVID-19
11.
preprints.org; 2021.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202106.0472.v1

RESUMEN

Several hypotheses have been presented on the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from its identification as the agent causing the current coronavirus disease 19 (COVID-19) pandemic. So far, no hypothesis has managed to identify the origin, and the issue has resurfaced. Here we have unfolded a pattern of distribution of several mutations in the SARS-CoV-2 proteins across different continents comprising 24 geo-locations. The results showed an evenly uneven distribution of unique protein variants, distinct mutations, unique frequency of common conserved residues, and mutational residues across the 24 geo-locations. Furthermore, ample mutations were identified in the evolutionarily conserved invariant regions in the SARS-CoV-2 proteins across almost all geo-locations we have considered. This pattern of mutations potentially breaches the law of evolutionary conserved functional units of the beta-coronavirus genus. These mutations may lead to several novel SARS-CoV-2 variants with a high degree of transmissibility and virulence. A thorough investigation on the origin and characteristics of SARS-CoV-2 needs to be conducted in the interest of science and to be prepared to meet the challenges of potential future pandemics.


Asunto(s)
Infecciones por Coronavirus , COVID-19
12.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.05.25.445557

RESUMEN

Open reading frame 8 (ORF8) protein is one of the most evolving accessory proteins in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). It was previously reported that the ORF8 protein inhibits presentation of viral antigens by the major histocompatibility complex class I (MHC-I) and interacts with host factors involved in pulmonary inflammation. The ORF8 protein assists SARS-CoV-2 to evade immunity and replication. Among many contributing mutations, Q27STOP, a mutation in the ORF8 protein defines the B.1.1.7 lineage of SARS-CoV-2, which is engendering the second wave of COVID-19. In the present study, 47 unique truncated ORF8 proteins (T-ORF8) due to the Q27STOP mutations were identified among 49055 available B.1.1.7 SARS-CoV-2 sequences. The results show that only one of the 47 T-ORF8 variants spread to over 57 geo-locations in North America, and other continents which includes Africa, Asia, Europe and South America. Based on various quantitative features such as amino acid homology, polar/non-polar sequence homology, Shannon entropy conservation, and other physicochemical properties of all specific 47 T-ORF8 protein variants, a collection of nine possible T-ORF8 unique variants were defined. The question of whether T-ORF8 variants work similarly to ORF8 has yet to be investigated. A positive response to the question could exacerbate future COVID-19 waves, necessitating severe containment measures.


Asunto(s)
Neumonía , Síndrome Respiratorio Agudo Grave , COVID-19
13.
preprints.org; 2021.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202105.0492.v1

RESUMEN

Favipiravir is a broad-spectrum inhibitor of viral RNA-dependent RNA polymerase (RdRp) currently being used to manage COVID-19 in several countries. By acting as a substrate for RdRp, favipiravir gets incorporated into the nascent viral RNA and prevents strand extension. A high mutation rate of SARS-CoV-2 RdRp may facilitate antigenic drift as an answer to the host immune response, thereby generating resistance of virus to favipiravir. Therefore, it is extremely crucial to predict potential mutational sites in the RdRp and the emergence of structural modifications contributing to drug resistance. Here, we used high-throughput interface-based protein design to generate >100,000 designs and identify mutation hotspot residues in the favipiravir-binding site of RdRp. Several mutants had lower binding affinities to favipiravir, out of which hotspot residues with a high propensity to undergo positive selection were identified. The results showed that the designs retained an average of 97 to 98% sequence identity, suggesting that SARS-CoV-2 can develop favipiravir resistance with just a few mutations. Notably, we observed that out of 134 mutations predicted designs, 63 specific mutations were already present in the CoV-GLUE database, thus attaining ~47% correlation match with the clinical sequencing data. The findings improve our understanding of the potential signatures of adaptation in SARS-CoV-2 against favipiravir and management of COVID-19. Furthermore, they can help develop exhaustive strategies for robust antiviral design and discovery.


Asunto(s)
COVID-19
14.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.05.18.444675

RESUMEN

Spike (S) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are critical determinants of the infectivity and antigenicity of the virus. Several mutations in the spike protein of SARS-CoV-2 have already been detected, and their effect in immune system evasion and enhanced transmission as a cause of increased morbidity and mortality are being investigated. From pathogenic and epidemiological perspectives, spike proteins are of prime interest to researchers. This study focused on the unique variants of S proteins from six continents Asia, Africa, Europe, Oceania, South America, and North America. In comparison to the other five continents, Africa (29.065%) had the highest percentage of unique S proteins. Notably, only North America had 87% (14046) of the total (16143) specific S proteins available in the NCBI database(across all continents). Based on the amino acid frequency distributions in the S protein variants from all the continents, the phylogenetic relationship implies that unique S proteins from North America were significantly different from those of the other five continents. Overtime, the unique variants originating from North America are most likely to spread to the other geographic locations through international travel or naturally by emerging mutations. Hence it is suggested that restriction of international travel should be considered, and massive vaccination as an utmost measure to combat the spread of COVID-19 pandemic. It is also further suggested that the efficacy of existing vaccines and future vaccine development must be reviewed with careful scrutiny, and if needed, further re-engineered based on requirements dictated by new emerging S protein variants.


Asunto(s)
COVID-19
15.
preprints.org; 2021.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202101.0297.v1

RESUMEN

Therapeutic options for the highly pathogenic human Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) causing the current pandemic Coronavirus disease (COVID-19) are urgently needed. COVID-19 is associated with viral pneumonia and acute respiratory distress syndrome causing significant morbidity and mortality. The proposed treatments for COVID-19, such as hydroxychloroquine, remdesivir and lopinavir/ritonavir, have shown little or no effect in the clinic. Additionally, bacterial and fungal pathogens contribute to the SARS-CoV-2 mediated pneumonia disease complex. The antibiotic resistance in pneumonia treatment is increasing at an alarming rate. Therefore, carbon-based nanomaterials (CBNs), such as fullerene, carbon dots, graphene, and their derivatives constitute a promising alternative due to their wide-spectrum antimicrobial activity, biocompatibility, biodegradability and capacity to induce tissue regeneration. Furthermore, the antimicrobial mode of action is mainly physical (e.g. membrane distortion), which is characterized by a low risk of antimicrobial resistance. In this review, we evaluated the literature on the antiviral activity and broad-spectrum antimicrobial properties of CBNs. CBNs had antiviral activity against 12 enveloped positive-sense single-stranded RNA viruses similar to SARS-CoV-2. CBNs with low or no toxicity to the humans are promising therapeutics against COVID-19 pneumonia complex with other viruses, bacteria and fungi, including those that are multidrug-resistant.


Asunto(s)
Infecciones por Coronavirus , Síndrome de Dificultad Respiratoria , Neumonía Viral , Neumonía , Síndrome Respiratorio Agudo Grave , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , COVID-19
16.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.11.06.372227

RESUMEN

The coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) which is pandemic with an estimated fatality rate less than 1% is ongoing. SARS-CoV-2 accessory proteins ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10 with putative functions to manipulate host immune mechanisms such as interferons, immune signaling receptor NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) inflammasome, inflammatory cytokines such as interleukin {beta} (IL-1{beta}) are critical in COVID-19 pathology. Outspread variations of each of the six accessory proteins of all complete proteomes (available as of October 26, 2020, in the National Center for Biotechnology Information depository) of SARS-CoV-2, were observed across six continents. Across all continents, the decreasing order of percentage of unique variations in the accessory proteins was found to be ORF3a>ORF8>ORF7a>ORF6>ORF10>ORF7b. The highest and lowest unique variations of ORF3a were observed in South America and Oceania, respectively. This finding suggests that the wide variations of accessory proteins seem to govern the pathogenicity of SARS-CoV-2, and consequently, certain propositions and recommendations can be made in the public interest.


Asunto(s)
Infecciones por Coronavirus , COVID-19
17.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.10.09.332908

RESUMEN

BACKGROUNDSince the first reports of COVID-19, decision-makers have been using traditional epidemiological models to predict the days to come. However, the enhancement of computational power, the demand for adaptable predictive frameworks, the short past of the disease, and uncertainties related to input data and prediction rules, also make other classical and machine learning techniques viable options. OBJECTIVEThis study investigates the efficiency of six models in forecasting COVID-19 confirmed cases with 17 days ahead. We compare the models autoregressive integrated moving average (ARIMA), Holt-Winters, support vector regression (SVR), k-nearest neighbors regressor (KNN), random trees regressor (RTR), seasonal linear regression with change-points (Prophet), and simple logistic regression (SLR). MATERIAL AND METHODSWe implement the models to data provided by the health surveillance secretary of Amapaa, a Brazilian state fully carved in the Amazon rainforest, which has been experiencing high infection rates. We evaluate the models according to their capacity to forecast in different historical scenarios of the COVID-19 progression, such as exponential increases, sudden decreases, and stability periods of daily cases. To do so, we use a rolling forward splitting approach for out-of-sample validation. We employ the metrics RMSE, R-squared, and sMAPE in evaluating the model in different cross-validation sections. FINDINGSAll models outperform SLG, especially Holt-Winters, that performs satisfactorily in all scenarios. SVR and ARIMA have better performances in isolated scenarios. To implement the comparisons, we have created a web application, which is available online. CONCLUSIONThis work represents an effort to assist the decision-makers of Amapa in future decisions to come, especially under scenarios of sudden variations in the number of confirmed cases of Amapa, which would be caused, for instance, by new contamination waves or vaccination. It is also an attempt to highlight alternative models that could be used in future epidemics.


Asunto(s)
COVID-19
18.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.10.08.332452

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that is engendering the severe coronavirus disease 2019 (COVID-19) pandemic. The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 binds to the three sub-domains viz. amino acids (aa) 22-42, aa 79-84, and aa 330-393 of ACE2 on human cells to initiate entry. It was reported earlier that the receptor utilization capacity of ACE2 proteins from different species, such as cats, chimpanzees, dogs, and cattle, are different. A comprehensive analysis of ACE2 receptors of nineteen species was carried out in this study, and the findings propose a possible SARS-CoV-2 transmission flow across these nineteen species.


Asunto(s)
COVID-19
20.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.09.06.284976

RESUMEN

The global public health is endangered due to COVID-19 pandemic, which is caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Despite having similar pathology to MERS and SARS-CoV, the infection fatality rate of SARS-CoV-2 is likely lower than 1%. SARS-CoV-2 has been reported to be uniquely characterized by the accessory protein ORF10, which contains eleven cytotoxic T lymphocyte (CTL) epitopes of nine amino acids length each, across various human leukocyte antigen (HLA) subtypes. In this study, all missense mutations found in sequence databases were examined across twnety-two unique SARS-CoV-2 ORF10 variants that could possibly alter viral pathogenicity. Some of these mutations decrease the stability of ORF10, e.g. I4L and V6I were found in the MoRF region of ORF10 which may also possibly contribute to Intrinsic protein disorder. Furthermore, a physicochemical and structural comparative analysis was carried out on SARS-CoV-2 and Pangolin-CoV ORF10 proteins, which share 97.37% amino acid homology. The high degree of physicochemical and structural similarity of ORF10 proteins of SARS-CoV-2 and Pangolin-CoV open questions about the architecture of SARS-CoV-2 due to the disagreement of these two ORF10 proteins over their sub-structure (loop/coil region), solubility, antigenicity and change from the strand to coil at amino acid position 26, where tyrosine is present. Altogether, SARS-CoV-2 ORF10 is a promising pharmaceutical target and a protein which should be monitored for changes which correlate to change pathogenesis and clinical course of COVID-19 infection.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA